IT电子书 源码 站长 QQ 组网 数据库 系统 软件教程 编程 设计 IT资讯
主页 > 嵌入式 > 硬件设计 > ARM系统 > 正文 嵌入式 http://www.it165.net/embed
基于嵌入式ARM9痕量毒气检测系统的研究

有毒有害气体对人体的伤害问题越来越突出[1],如工业作业产生的有毒有害气体泄露;室内空气中醛、苯等超标导致的“致病建筑物综合症”;导弹等发射产生有毒气体对士兵身体的损害;汽车内有害气体超标导致的头晕、咳嗽等症状。传统毒气检测方法如分光光度法、非色散红外分析法[2]和气相色谱法,都存在着灵敏度易受干扰、不易实现现场检测等缺陷,其他如滴定或者比色法、气体传感器直接检测法等,耗时较长、操作复杂、选择性较差。
相对于传统检测方法的不足,卟啉传感器由于其优良光敏特性[3]和对于微量气体的快速、准确响应成为毒气检测的理想传感器。卟啉阵列传感器采用金属卟啉作为传感器的气体敏感膜,与不同气体接触后,金属卟啉分子间键、程度和张力不同,吸收光谱改变也不同,出现颜色变化差异,可唯一地表征气体特征信息,实现毒气的颜色“指纹“信息检测[4-5]。同时,基于传感器的嵌入式ARM-Linux技术发展迅速,具有良好的硬件平台和编程环境,可方便定制开发基于卟啉传感器的毒气检测系统。基于此[6],本文设计了以卟啉阵列为传感器、嵌入式ARM9为核心控制、PIC16F877为辅助控制的痕量毒气检测系统。
1 系统总体设计
1.1 系统组成
基于嵌入式的毒气检测系统总体结构如图1所示,主要包括前端传感检测装置、下位机MCU和上位机嵌入式ARM9。前端传感装置采用金属卟啉传感器阵列,利用其与气体接触出现颜色变化的原理产生光谱信息;下位机MCU主要实现对反应环境的监控;上位机嵌入式ARM9实现对下位机的控制、光谱信息获取、处理、存储和显示等。

1.2 工作流程
系统上电后,进入LCD触摸屏界面,通过功能菜单打开摄像头,采集反应前图像信息,开启微泵采集待测气体进入反应室,同时打开流量、湿度、温度传感器监测气体实时情况,待其与卟啉传感阵列充分反应后采集反应后图像。进入处理界面,将反应前后图像信息进行处理,得出待测气体特征信息并实时显示与存储。


2 系统硬件设计
系统硬件主要由嵌入式ARM9主控制系统和微控制系统MCU组成,如图2所示。嵌入式主控系统以S3C2440A为核心,主要包括图像采集、系统显示、存储和主从通信模块;MCU辅助控制系统以PIC16F877为核心,主要包括气体采集控制、条件监控、可控光源等模块。

2.1 主控硬件设计
(1)图像采集模块
毒气检测系统采用OV9650获取卟啉传感阵列光谱信息,OV9650产生CAMVSYNC、CAMHREF、CAMPCLK信号输入到CPU,控制完成每一帧图像数据的采集。OV9650数据接口D[9:2]与S3C2440A的CAMIF数据接口CAMDATA[7:0]相连接,完成图像数据的采集,其接口连接如图3所示。

(2)系统显示模块
毒气检测系统采用NEC 3.5英寸的320×240的TFT型LCD,亮度好、对比度高,对于卟啉阵列颜色图像采集和显示具有优越性。Linux操作系统为不同型号的LCD提供了相应的framebuffer底层驱动,支持Qt/Embedded等嵌入式图形软件,而且完成了对触摸屏的良好支持。
(3)存储模块
以S3C2440A为中心,扩展了Nand Flash(256 M×8 bit的K9F2G08),在系统中用作存储Bootloader、内核和文件系统;SDRAM(2片32 M×16 bit的HY57V561620)缓存空间大。检测过程中图像数据量庞大,外扩SD卡作为存储介质。
(4)主从通信模块
嵌入式ARM9和PIC16F877以RS232串口实现通信。
2.2 MCU硬件设计
2.2.1 气体采样控制模块
毒气检测系统采用泵吸式采集反应气体;采用PWM脉宽调速,把恒定直流电压调制成频率一定脉宽可调的脉冲电压序列;气泵外接5 V直流电压,通过PIC16F877输出PWM高低电平控制回路通断,改变电机的平均驱动电压而实现调速。其平均电压如下:

其中,T为脉冲周期,ton为导通时间,?籽为占空比。在电源Ui与PWM周期T固定的条件下,Uout可随?籽的改变而平滑调节,从而实现对气泵两端有效电压的调节。
2.2.2 条件监控模块
卟啉传感器和毒气的反应环境状况直接影响着气体的特征图谱,需要监测毒气温度、湿度和流量动力学因素,为此设计了相应驱动及转换电路。温度传感器采用数字温度传感器DS18B20,检测到温度后直接将12 bit数字信号串行传输到PIC16F877;流量传感器采用AWM3300,工作电压10 V,输出信号1~5 V;湿度传感器采用HIH4000,输出电压信号为供电电压、湿度和温度的函数,由式(2)得到RH0,温度补偿后得到实际湿度RH;式(3)中的t为当前实际温度。采用MAX197两个模拟通道对流量、湿度转换后传输给MCU。
 
2.2.3 可控光源模块
单个LED作为近朗伯体发光能较低,光通量只有几十流明,而采用LED阵列可增加光源发光面积和光通量,提高卟啉传感器图像质量。可控光照模块由发光二极管阵列和柔光板组成,系统光源模型如图4(a)所示,点光源照度分布如图4(c)所示,光源S在面元ds产生照度为E,如式(4),I为光源发光强度,r为光源与受照面元距离,θ为面元和光束倾角。当光源S处于光轴方向(即θ=0)时,受照面光照度分布与空间光强分布近似,如式(5)。


LED为非相干光源,因此,当两个LED间距为d时,对平面某一面元光照度为其叠加,同时转换为三维坐标,如式(8)。
 

相关推荐
热门搜索: 嵌入式 ARM9
About IT165 - 广告服务 - 隐私声明 - 版权申明 - 免责条款 - 网站地图 - 网友投稿 - 联系方式
版权所有: it165.net--成就IT技术人才的摇篮 Email:admin#it165.net
通信局备案:鲁ICP备10207958号
本站内容来自于互联网,仅供用于网络技术学习,学习中请遵循相关法律法规